
Hot/Cold LEDs
Written By: Julius Schmiedel

PARTS:

Arduino Uno Board (1)
from RadioShack.

USB cable (1)
from RadioShack.

Parallax 'Ping' Sensor (1)
from RadioShack.

Breadboard Jumper Wires (1)

Carbon-film resistor assortment pack (1)
from RadioShack.

Super-bright Blue LED (1)
from RadioShack.

Super-bright Red LED (1)
from RadioShack.

Resistor, 56Ω, 1/4W (1)
from RadioShack.

Resistor, 150Ω, 1/4W (1)
from RadioShack.

SUMMARY

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 1 of 10

http://www.radioshack.com/product/index.jsp?productId=12268262
http://www.radioshack.com/product/index.jsp?productId=2261723
http://www.radioshack.com/product/index.jsp?productId=12326359
http://www.makershed.com/product_p/mkseeed3.htm
http://www.radioshack.com/product/index.jsp?productId=2062306
http://www.radioshack.com/product/index.jsp?productId=12582714
http://www.radioshack.com/product/index.jsp?productId=12582712
http://www.radioshack.com/product/index.jsp?productId=12554426
http://www.radioshack.com/product/index.jsp?productId=12554430

SUMMARY

In this project, we will combine an Arduino, a Ping sensor, and a small assortment of
components, to build a project that senses distances as "hot/cold." Once built, we'll walk
through the software running our basic "sketch," (what an Arduino program is called) and
then experiment with variations of the "hot/cold" theme, all the while using the same circuit.

For the Arduino sketch files provided, the V1 sketch is detailed below. It measures distance
from the sensor. The farther you are from the sensor, the "cold" blue LED begins to glow,
and then the closer you get to the sensor, the "cold" LED fades away and the "hot" red LED
turns up to full brightness!

The V2 sketch is a "capture the ping" game. At first, the "cold" blue LED glows, and every so
often, the "hot" red LED will flash. When the red LED is on, try to move your hand in front of
the sensor quickly. If you are fast enough, the red LED will flash; if you are too slow (or
cheat!), the blue LED will flash.

And finally, the V3 sketch is a simple "hot/cold" switch. When no object is present in front of
the sensor, the "cold" blue LED will produce a slow pulse. When it does sense an object, say
when you sit down in front of your computer, the "cold" blue LED will turn off and the "hot"
red one will shine at full brightness. This switch can be used to trigger other effects, such as
waking your computer up from sleep mode.

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 2 of 10

Step 1 — Gather all your components.

Believe it or not, these are all the parts you will require for this build!

NOTE: Resistors listed in subsequent steps are for the LEDs suggested in the
parts list. If you want to use different LEDs, you'll have to calculate the resistor
required using Ohm's Law. Search online for "LED calculator" to determine the resistor
needed. The 500-pack of resistors is recommended so you always have a range of options
available.

First, connect the breadboard to the Arduino. Using two jumper wires: connect one wire
from the 5V pin on the Arduino to the power rail on the breadboard. Have the other go from
the GND pin to the ground rail.

Take a look at the Ping sensor. You‘ll notice three pins next to each other, labeled GND,
5V, and Sig (as in "Signal"). Now, let's wire up the connections necessary to supply power,
ground, and signal to the Ping Sensor.

Decide where you want your Ping sensor located on the breadboard. Make a connection
between the ground rail and the sensor's GND pin row. Add another wire between the
power rail and the sensor's 5V pin row. Alternatively, you could use short pieces of 20
AWG hookup wire.

Lastly, make a connection between the Ping sensor's Sig(nal) pin row, and the Arduino pin
labeled number 7. This connection will work in two directions: It will be used to send the
"ping“ from the sensor, and also transmit the signal coming back from an object in front of
the sensor.

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 3 of 10

Step 2 — Place the Ping sensor.

Place the Ping sensor on the board so that the connections line up with the wires you just
placed. Carefully check to ensure all the connections are correct. Trace the connection
from the Arduino GND pin to the ground rail, to the GND pin on the Ping sensor. Do the
same for the supply voltage.

Next, use two jumper wires which will eventually connect the LEDs to the Arduino. Place a
wire from the Arduino pin 6 to the row where you want to place your blue LED. Do the
same for the row intended for the red LED, and connect it to the Arduino pin 5.

If you‘re curious about why I left two rows empty in-between the two jumper wires
on the breadboard, that's because we need a resistor for each LED (see next step
for details). The resistor values are calculated by using the rated voltage and current of the
LED, and the voltage supplied, and Ohm's Law.

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 4 of 10

Step 3 — Connect the LEDs and resistors.

First, take the 150Ω resistor (brown-green-brown) and make a connection between the
ground rail and the row next to the row connected to pin 5 (driving the red LED). Using the
56Ω resistor (green-blue-black), do the same for the blue LED, connecting the ground rail
and the row next to the one connected to pin 6 on the Arduino.

All we need to do now is connect our LEDs to the board. Since LEDs, like all diodes, work
only in one direction, you have to make sure to place them so the shorter leg, called
cathode, is connected to GND through the resistor. The "positive“ side, called anode, has
the longer leg and will be connected to the Arduino via a jumper wire.

Place the red LED so the shorter leg will be connected to the resistor, and the longer leg
goes in the row which is connected to pin 5. Do the same for the blue LED, connecting its
cathode to the resistor, and the anode to the row going to pin 6 of your Arduino.

A simple visual check now will save time in the future. Trace the connections to
make sure everything is in its designated place. Once you're ready to load the
software sketches, continue to the next step.

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 5 of 10

Step 4 — Watch them glow!

When everything looks okay, we‘re done building the hardware part of our project. Now,
fire up your computer. If this is your first Arduino build, download the Arduino Software
from http://arduino.cc

A lot of makers use the blink tutorial for their first build. It's a great primer for
understanding the Arduino SDK, or software development kit:
http://arduino.cc/en/Tutorial/blink

Start the Arduino Software, and download the Hot/Cold sketch files for this project. Begin
with the V1 sketch, which is a "hot/cold" proximity sketch. Hit the Upload button in the
Arduino software and the sketch will compile.

Use your hand or an object to quickly test the Ping sensor and see how it works. Now that
the hardware of your Hot/Cold LEDs is working, we will take a look at the code in the
subsequent steps.

The V2 & V3 sketches are additional programs that use the same Arduino and
breadboard hardware configuration to produce variations of the "hot/cold" theme.
Once you understand the V1 sketch, upload the V2 & V3 sketches and experiment with
them. Then, build your own hot/cold project!

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 6 of 10

http://arduino.cc
http://arduino.cc/en/Tutorial/blink
https://github.com/Make-Magazine/HotCold-LEDs

Step 5 — Calculate the ''ping'' time.

The first lines of code are a basic
configuration: declare the pins used
for the sensor and the LEDs,
measure the "distance" which will
be used to store the distance (in
cm), and determine the
"pulseDuration" which stores the
time it takes between sending the
ping and receiving it again by the
sensor.

In the "loop()" - the main program
being run by the Arduino - you can
see the three steps used to
measure the distance of an object
from the sensor. First, it sets the
SensorPin to output and emits a 5
microsecond long impulse, the
ping. Then, the SensorPin gets
switched to input, and the program
counts the time for the ping to
return.

The "pulseDuration" first gets
divided by two, because we
measure the time the ping takes
going from and back to the sensor.
Then it gets divided by 29. Why
29? Our measurement is in
microseconds, and sound travels
at 1cm per 29 microseconds.

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 7 of 10

http://arduino.cc/en/Tutorial/Ping

Step 6 — The Red LED code.

Given the distance from an object,
the program calculates output for
the LEDs. First, let's take a look at
the code driving the red LED.

The Parallax Ping Sensor
can measure distances up
to 300cm, but we will be restricting
the device (in software) to measure
between 0-50cm.

The red LED will light up starting at
25cm, and will increase to full
brightness at 0cm. First, we check
if the object is within 25cm. If true,
we need to translate the distance of
25-0cm into an integer value
between 0 and 255, which
determines the brightness of the
LED.

Don't let the similar
numbers confuse you. The
value 255 is considered "always
on" to the Arduino, whereas 0 is
considered "off." The measurement
and brightness intensity operate so
that ≥25cm=0 and 0cm=255.

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 8 of 10

Step 7 — The Blue LED code.

For the blue LED, it's a bit more
complex. Since it should light up
between 50-25cm, but fade out
between 25-10cm, we need to add
an additional "if" statement to the
code. Again, there is calculation to
translate the distance of 10-25cm
into an integer value between 0 and
255.

Then we do another translation for
the case of distance being between
25 and 50cm. This time, an input
between 25 and 50 gets translated
into an integer between 255 and 0,
respectively.

If the Distance is not within
the two specified ranges in
the "if" and "else if" statements
above, the blue LED is "0," or "off".

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 9 of 10

This document was last generated on 2012-12-20 01:12:22 PM.

Step 8 — Experiment with Hot/Cold

The last instruction is a "delay()" of
20 milliseconds, which gives us
approximately 50 loops per second.
This could be called the polling
interval, or refresh rate, for our
code.

Since it takes some time to
execute the instructions in
our loop, the actual rate is slightly
lower, but there are still plenty of
updates per second to trick the
human eye.

The V2 and V3 sketches provide
other examples of how to turn this
exact same circuit configuration
into another project, including a
"capture the ping" game and a
"hot/cold" on/off switch. Just
download the sketches, open them
in the Arduino Software, and upload
them! (Comments in the sketches
tell you exactly what they do.)

Now that you know all about the
hardware and software for this
build, you should hack, modify, and
improve Hot/Cold LEDs by turning
it into your own project!

Hot/Cold LEDs

© Make Projects www.makeprojects.com Page 10 of 10

	Hot/Cold LEDs
	Written By: Julius Schmiedel

	PARTS:
	SUMMARY
	Step 1 — Gather all your components.
	Step 2 — Place the Ping sensor.
	Step 3 — Connect the LEDs and resistors.
	Step 4 — Watch them glow!
	Step 5 — Calculate the ''ping'' time.
	Step 6 — The Red LED code.
	Step 7 — The Blue LED code.
	Step 8 — Experiment with Hot/Cold

